Vulnerable Road User Protection

There are many ways to digitize intersections where complex interactions happen, as almost all different road users can be present at the same time. Protecting VRUs is one of the most important and most challenging goals.

One of our solutions rely on active positioning. Active tags and personal devices help in determining the position of road users in a certain area. This approach was used, for example, in the Secredas project where we identified and measured the position of pedestrians with Ultra-wideband (UWB) technology. UWB is already available in high-end smartphones and accessories, and now it’s mostly used to find lost items – keys, other devices and luggages – using our mobile phones at hand.

We have turned things around to use mobile phones at hand to determine the user’s position.

Another method relies on passive positioning. In this case, the key to improve road safety is how the roadside infrastructure perceives the environment. There are many smart sensors already installed in cities and along highways, such as radars, lidars and cameras, which can identify, classify and locate various objects appearing in their field of view. Connecting these smart sensors to Commsignia V2X roadside units allows us to include non-connected road users in the V2X ecosystem, without using active tags and smart personal devices.

Commsignia’s Pedestrian Intersection Movement Assist (P-IMA) application runs on any smart devices and enables non-V2X capable pedestrians to cross an intersection with elevated safety.

The application analyzes the movement of nearby vehicles and gives notifications to the user in case of potentially dangerous situations. The roadside unit (RSU) can also trigger a warning on the on-board unit (OBU) of an approaching vehicle to notify the driver of the possible danger.

Virginia
Case Study

Project background

Protecting pedestrians and bikers on the roads is a particularly important topic in the area of vehicle communications, and innovative car manufacturers like Audi are recognizing that V2X technologies allow them to prevent accidents with vulnerable road users. In addition to safety V2X allows drivers to enter intersections more confidently, knowing in advance when the traffic lights turn red.

Commsignia and Audi are collaborating with Qualcomm, American Tower Corp., Virginia Tech Transportation Institute (VTTI), Traffic Technology Services, and the Virginia Department of Transportation (VDOT) in deploying cellular vehicle to everything (C-V2X) devices on the Virginia Smart Road to improve safety, offer new services to customers and develop new business models with public and private sectors involved.

Traffic signal information use case is building on Audi’s already established Traffic Light Information (TLI) service, that shows the time until the lights turn green. The new roadside infrastructure is sending low latency C-V2X messages to the Audi Q8 SUVs and warns drivers about an imminent red-light violation.

The vulnerable road user (VRU) use case is focusing on a specific group of pedestrians, road maintenance workers. Safety messages are sent both ways. Roadside personnel in the construction zone were equipped with C-V2X-enabled vests that warned them of the approaching Audi Q8 SUVs outfitted with C-V2X onboard units, and the vehicles also received alerts about VRUs nearby.

Commsignia contribution

Commsignia supplied C-V2X enabled ITS-RS4 roadside units and ITS-OB4 onboard units for the project.

The C-V2X ITS-RS4 platform provides a precise digital map of the intersection and traffic light timing information for each lane.
The C-V2X ITS-RS4 platform provides a precise digital map of the intersection and traffic light timing information for each lane.

Onboard traffic light information is useful for drivers in case they don’t see the lights well due to harsh weather conditions.

V2X message types used in this project:

MAPcontains information about the lanes in the intersection
SPaTSignal Phase and Timing, gives information about the traffic light statuses
TIMTraveler Information Message (DENM in Europe), contains information about road and traffic related issues
BSMBasic Safety Message, describes the vehicle
PSMPersonal Safety Message, similar to BSM, but reporting about humans and animals

Outcome

Vehicles equipped with C-V2X can receive low latency warnings about hazards recognised by the digital road infrastructure. It’s an ongoing project, and the roadside units deployed act as enablers for autonomous driving functions. The Virginia Smart Road project was well received by the U.S. media.

West Midlands
Case Study

Project background

Transportation is quickly evolving, and the industry is looking for innovative ways to make the delivery of goods safer, faster and more predictable. The Midlands Future Mobility consortium is based in the West Midlands, the hub of car manufacturing and automotive technologies in the UK, and has built the testbed for connected and autonomous vehicles (CAVs) and intelligent transport systems to evaluate new technologies.

Transport for West Midlands sub-contracted Siemens Mobility who have been working closely with Commsignia since May 2020 to install CAV infrastructure on the Midlands Future Mobility route, over 300 kilometers of urban, rural, suburban and highway roads. The region’s automotive sector will trial, develop and deploy technology on the route, for example utilising data to trigger warnings about traffic and road hazards. In the future autonomous vehicles will also be trialled, closely monitored by operators.

Fully integrating Public Key Infrastructure (PKI) into the devices guarantees secure communication between the Roadside Units (RSUs) and the device management. Safety is a basic requirement in the project as the trials are running on public roads.

Commsignia contribution

Commsignia supplied roadside units to the project’s multi-vendor environment, connecting the RSUs with device management developed by Siemens Mobility.

The C-V2X ITS-RS4 platform provides a precise digital map of the intersection and traffic light timing information for each lane.
The C-V2X ITS-RS4 platform provides a precise digital map of the intersection and traffic light timing information for each lane.

The project is among the first deployments in Europe to integrate CAV infrastructure with security PKI in order to establish fully secure communication on the V2X interface.

Outcome

The Midlands Future Mobility project paves the way to improve air quality, reduce congestion and integrate ridesharing services to the public transport services. It’s also the infrastructural foundation of the region’s planned responsive, flexible and predictable goods delivery system that will be based on autonomous pods and carriers.

Las Vegas
Case Study

Project background

Las Vegas is a city with intense tourism, and visitors typically wander around the downtown by foot, being unfamiliar with local transport environment, with their attention divided. The City puts great emphasis on making its roads safe for the most vulnerable road users, and was looking for a future-proof solution to lay the basis of intelligent transport and preparing for the autonomous era.

In late 2017, Las Vegas also launched the very first driverless shuttle on a public street in America. Members of the public can take free rides on a 12-seater Navya self-driving shuttle along a 0.6 mile loop that includes the city’s iconic Fremont Street. Making sure it has a smooth ride was a key priority.

Commsignia contribution

Commsignia’s roadside units (RSU) were installed along the Las Vegas Strip and other critical infrastructure points in the Las Vegas Innovation District such as traffic intersections, roundabouts and busy roads.

The C-V2X ITS-RS4 platform provides a precise digital map of the intersection and traffic light timing information for each lane.
The C-V2X ITS-RS4 platform provides a precise digital map of the intersection and traffic light timing information for each lane.

Working with the local partner, Southwest Traffic Systems, Commsignia supplied its next generation Smart City ITS-RS4 Roadside Units as part of the infrastructure to support the driverless shuttle at junctions and other critical points along the route.

The ITS-RS4 acts as a local hub for sensor data exchange as well as a service/application platform that can be used to enhance the safety of all road users and help optimize traffic management. The ITS-RS4 gathers information from the surrounding environment such as traffic cameras, traffic light controllers, sensors and V2X connected vehicles – cars, motor-cycles and even bicycles. A powerful Deep Neural Network / GPU accelerated Artificial Intelligence processor creates a real-time representation of the information to create a dynamic model of the environment.

Applications and services in the ITS-RS4 utilize the dynamic model to enhance road-safety generating real-time alerts to drivers, connected autonomous vehicles and pedestrians, whilst escalating events and aggregated data for analytics to Traffic Management Centers.

Outcome

The deployment is one of the largest smart city deployment in Northern America to date.The infrastructure has been operational for 2 years and counting, with no major hardware failure. The cooperation has been since expanded, from the initial 80 RSUs now the number exceeds 100 devices. The driverless shuttle carried over 30,000 passengers in its first 11 months of operation.

San Diego
Case Study

Project background

In August 2020, the San Diego Regional Proving Grounds — a U.S. Department of Transportation designated regional test-bed for highly automated and self-driving vehicles — Caltrans, the San Diego San Diego Association of Governments (SANDAG) and other local agencies launched a pilot project to evaluate C-V2X technology as part of a connected roadside infrastructure, and to assess how it can support the widespread deployment of intelligent transport solutions.

The project covers a 3-mile stretch of highways and traffic light intersections off Interstate-805 and State Route 52 between Sorrento Valley and Kearny Mesa. It also includes vehicles equipped with onboard units (OBU) and roadside units (RSU).

During the pilot, infrastructure-to-vehicle (I2V) TIM messages are being sent out, covering reduced speed zone, work zone and disabled vehicle. With the expansion of the pilot, the implementation of SPaT is also planned.

Commsignia contribution

Commsignia contributed to the project by supplying
C-V2X enabled ITS-RS4 roadside units.

The C-V2X ITS-RS4 platform provides a precise digital map of the intersection and traffic light timing information for each lane.
The C-V2X ITS-RS4 platform provides a precise digital map of the intersection and traffic light timing information for each lane.

It features the latest cyber security measures including Hardware Security Modules (HSM) and V2X Software Stack to make sure that the system adheres and exceeds latest security standards.
The ITS-RS4 platform builds on the market leading and proven V2X Software stack supporting applications including

  • V2V for vehicle collision avoidance and safety systems;
  • V2I for enhanced traffic signal timing and priority;
  • V2N for real-time traffic routing and cloud services;
  • V2P for safety alerts to pedestrians, cyclists and motor bikes.

Outcome

The pilot is still ongoing, the experience gained will support transportation planning efforts of the region.